Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
                                            Some full text articles may not yet be available without a charge during the embargo (administrative interval).
                                        
                                        
                                        
                                            
                                                
                                             What is a DOI Number?
                                        
                                    
                                
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
- 
            Abstract We analyze the dense gas kinematics in two class 0/I protostellar cores, Per 30 and NGC 1333 IRAS 7, in the Perseus Molecular Cloud to determine whether their velocity structures are indicative of rotation. We examine the hyperfine structure of the N2H+J= 1–0 transition by combining 3″ (900 au) Atacama Large Millimeter/submillimeter Array measurements with 9″ (2700 au) measurements from the Green Bank Telescope. We use theCASA Feathermethod to combine these data in order to maximize our sensitivity across spatial scales. We fit the N2H+spectra to constrain the centroid velocity of the gas at each pixel and use these values to calculate the linear velocity gradient and specific angular momentum within apertures centered on each protostar with radii ranging from 5″ to 60″. Our results indicate that the velocity structure probed by the N2H+emission is likely not a result of core rotation. These findings are consistent with other studies in the literature that indicate rotation is often not evident on scales ≲1000 au. We instead suggest that the velocity structure we see is a result of torques caused by irregular density distributions in these protostellar systems.more » « lessFree, publicly-accessible full text available May 22, 2026
- 
            Abstract We present ∼8–40μm SOFIA-FORCAST images of seven regions of “clustered” star formation as part of the SOFIA Massive Star Formation Survey. We identify a total of 34 protostar candidates and build their spectral energy distributions (SEDs). We fit these SEDs with a grid of radiative transfer models based on the turbulent core accretion (TCA) theory to derive key protostellar properties, including initial core mass,Mc, clump environment mass surface density, Σcl, and current protostellar mass,m*. We also carry out empirical graybody (GB) estimation of Σcl, which allows a case of restricted SED fitting within the TCA model grid. We also release version 2.0 of the open-source Python packagesedcreator, which is designed to automate the aperture photometry and SED building and fitting process for sources in clustered environments, where flux contamination from close neighbors typically complicates the process. Using these updated methods, SED fitting yields values ofMc∼ 30–200M⊙, Σcl,SED∼ 0.1–3 g cm−2, andm*∼ 4–50M⊙. The GB fitting yields smaller values of Σcl,GB≲ 1 g cm−2. From these results, we do not find evidence for a critical Σclneeded to form massive (≳8M⊙) stars. However, we do find tentative evidence for a dearth of the most massive (m*≳ 30M⊙) protostars in the clustered regions, suggesting a potential impact of environment on the stellar initial mass function.more » « lessFree, publicly-accessible full text available June 3, 2026
- 
            We present the results of the observations made within the ALMA Large Program called Early Planet Formation in Embedded disks of the Class 0 protostar GSS30 IRS3. Our observations included the 1.3 mm continuum with a resolution of 0″.05 (7.8 au) and several molecular species, including12CO,13CO, C18O, H2CO, and c-C3H2. The dust continuum analysis unveiled a disk-shaped structure with a major axis of ~200 au. We observed an asymmetry in the minor axis of the continuum emission suggesting that the emission is optically thick and the disk is flared. On the other hand, we identified two prominent bumps along the major axis located at distances of 26 and 50 au from the central protostar. The origin of the bumps remains uncertain and might be an embedded substructure within the disk or the temperature distribution and not the surface density because the continuum emission is optically thick. The12CO emission reveals a molecular outflow consisting of three distinct components: a collimated component, an intermediate-velocity component exhibiting an hourglass shape, and a wider angle low-velocity component. We associate these components with the coexistence of a jet and a disk wind. The C18O emission traces both a circumstellar disk in Keplerian rotation and the infall of the rotating envelope. We measured a stellar dynamical mass of 0.35 ±0.09 M⊙.more » « less
- 
            Context.Previous observations of the isolated Class 0 source B335 have presented evidence of ongoing infall in various molecular lines, such as HCO+, HCN, and CO. There have been no confirmed observations of a rotationally supported disk on scales greater than ~12 au. Aims.The presence of an outflow in B335 suggests that a disk is also expected to be present or undergoing formation. To constrain the earliest stages of protostellar evolution and disk formation, we aim to map the region where gas falls inwards and observationally constrain its kinematics. Furthermore, we aim to put strong limits on the size and orientation of any disk-like structure in B335. Methods.We used high angular resolution13CO data from the Atacama Large Millimeter/submillimeter Array (ALMA) and combined it with shorter-baseline archival data to produce a high-fidelity image of the infall in B335. We also revisited the imaging of high-angular resolution Band 6 continuum data to study the dust distribution in the immediate vicinity of B335. Results.Continuum emission shows an elliptical structure (10 by 7 au) with a position angle 5 degrees east of north, consistent with the expectation for a forming disk in B335. A map of the infall velocity (as estimated from the13CO emission), shows evidence of asymmetric infall, predominantly from the north and south. Close to the protostar, infall velocities appear to exceed free-fall velocities. Three-dimensional (3D) radiative transfer models, where the infall velocity is allowed to vary within the infall region, may explain the observed kinematics. Conclusions.The data suggest that a disk has started to form in B335 and that gas is falling towards that disk. However, kinematically-resolved line data towards the disk itself is needed to confirm the presence of a rotationally supported disk around this young protostar. The high infall velocities we measured are not easily reconcilable with a magnetic braking scenario, suggesting that there is a pressure gradient that allows the infall velocity to vary in the region.more » « less
- 
            In this Letter we report Very Long Baseline Array observations of 22 GHz water masers toward the protostar CARMA–6 , located at the center of the Serpens South young cluster. From the astrometric fits to maser spots, we derive a distance of 440.7±3.5 pc for the protostar (1% error). This represents the best direct distance determination obtained so far for an object this young and deeply embedded in this highly obscured region. Taking depth effects into account, we obtain a distance to the cluster of 440.7 ± 4.6 pc. Stars visible in the optical that have astrometric solutions in the Gaia Data Release 3 are, on the other hand, all located at the periphery of the cluster. Their mean distance of 437 −41 +51 pc is consistent within 1 σ with the value derived from maser astrometry. As the maser source is at the center of Serpens South, we finally solve the ambiguity of the distance to this region that has prevailed over the years.more » « less
- 
            Abstract We present Atacama Large Millimeter/submillimeter Array (ALMA) observations of the binary Class 0 protostellar system BHR 71 IRS1 and IRS2 as part of the Early Planet Formation in Embedded Disks (eDisk) ALMA Large Program. We describe the12CO (J= 2–1),13CO (J= 2–1), C18O (J= 2–1), H2CO (J= 32,1–22,0), and SiO (J= 5–4) molecular lines along with the 1.3 mm continuum at high spatial resolution (∼0.″08 or ∼5 au). Dust continuum emission is detected toward BHR 71 IRS1 and IRS2, with a central compact component and extended continuum emission. The compact components are smooth and show no sign of substructures such as spirals, rings, or gaps. However, there is a brightness asymmetry along the minor axis of the presumed disk in IRS1, possibly indicative of an inclined geometrically and optically thick disk-like component. Using a position–velocity diagram analysis of the C18O line, clear Keplerian motions were not detected toward either source. If Keplerian rotationally supported disks are present, they are likely deeply embedded in their envelope. However, we can set upper limits of the central protostellar mass of 0.46M⊙and 0.26M⊙for BHR 71 IRS1 and BHR 71 IRS2, respectively. Outflows traced by12CO and SiO are detected in both sources. The outflows can be divided into two components, a wide-angle outflow and a jet. In IRS1, the jet exhibits a double helical structure, reflecting the removal of angular momentum from the system. In IRS2, the jet is very collimated and shows a chain of knots, suggesting episodic accretion events.more » « less
- 
            Abstract Young protostellar binary systems, with expected ages less than ∼105yr, are little modified since birth, providing key clues to binary formation and evolution. We present a first look at the young, Class 0 binary protostellar system R CrA IRAS 32 from the Early Planet Formation in Embedded Disks ALMA large program, which observed the system in the 1.3 mm continuum emission,12CO (2−1),13CO (2−1), C18O (2−1), SO (65−54), and nine other molecular lines that trace disks, envelopes, shocks, and outflows. With a continuum resolution of ∼0.″03 (∼5 au, at a distance of 150 pc), we characterize the newly discovered binary system with a separation of 207 au, their circumstellar disks, and a circumbinary disklike structure. The circumstellar disk radii are 26.9 ± 0.3 and 22.8 ± 0.3 au for sources A and B, respectively, and their circumstellar disk dust masses are estimated as 22.5 ± 1.1M⊕and 12.4 ± 0.6M⊕, respectively. The circumstellar disks and the circumbinary structure have well-aligned position angles and inclinations, indicating formation in a smooth, ordered process such as disk fragmentation. In addition, the circumstellar disks have a near/far-side asymmetry in the continuum emission, suggesting that the dust has yet to settle into a thin layer near the midplane. Spectral analysis of CO isotopologues reveals outflows that originate from both of the sources and possibly from the circumbinary disklike structure. Furthermore, we detect Keplerian rotation in the13CO isotopologues toward both circumstellar disks and likely Keplerian rotation in the circumbinary structure; the latter suggests that it is probably a circumbinary disk.more » « less
- 
            Abstract We present the first results from the Early Planet Formation in Embedded Disks Atacama Large Millimeter/submillimeter Array Large Program toward Oph IRS43, a binary system of solar mass protostars. The 1.3 mm dust continuum observations resolve a compact disk, ∼6 au radius, around the northern component and show that the disk around the southern component is even smaller, ≲3 au. CO,13CO, and C18O maps reveal a large cavity in a low-mass envelope that shows kinematic signatures of rotation and infall extending out to ∼2000 au. An expanding CO bubble centered on the extrapolated location of the source ∼130 yr ago suggests a recent outburst. Despite the small size of the disks, the overall picture is of a remarkably large and dynamically active region.more » « less
- 
            Abstract We present Atacama Large Millimeter/submillimeter Array observations of the ∼10,000 au environment surrounding 21 protostars in the Orion A molecular cloud tracing outflows. Our sample is composed of Class 0 to flat-spectrum protostars, spanning the full ∼1 Myr lifetime. We derive the angular distribution of outflow momentum and energy profiles and obtain the first two-dimensional instantaneous mass, momentum, and energy ejection rate maps using our new approach: the pixel flux-tracing technique. Our results indicate that by the end of the protostellar phase, outflows will remove ∼2–4 M ⊙ from the surrounding ∼1 M ⊙ low-mass core. These high values indicate that outflows remove a significant amount of gas from their parent cores and continuous core accretion from larger scales is needed to replenish core material for star formation. This poses serious challenges to the concept of cores as well-defined mass reservoirs , and hence to the simplified core-to-star conversion prescriptions. Furthermore, we show that cavity opening angles, and momentum and energy distributions all increase with protostar evolutionary stage. This is clear evidence that even garden-variety protostellar outflows: (a) effectively inject energy and momentum into their environments on 10,000 au scales, and (b) significantly disrupt their natal cores, ejecting a large fraction of the mass that would have otherwise fed the nascent star. Our results support the conclusion that protostellar outflows have a direct impact on how stars get their mass, and that the natal sites of individual low-mass star formation are far more dynamic than commonly accepted theoretical paradigms.more » « less
- 
            Abstract Protostellar disks are an ubiquitous part of the star formation process and the future sites of planet formation. As part of the Early Planet Formation in Embedded Disks large program, we present high angular resolution dust continuum (∼40 mas) and molecular line (∼150 mas) observations of the Class 0 protostar IRAS 15398–3359. The dust continuum is small, compact, and centrally peaked, while more extended dust structures are found in the outflow directions. We perform a 2D Gaussian fitting and find the deconvolved size and 2σradius of the dust disk to be 4.5 × 2.8 au and 3.8 au, respectively. We estimate the gas+dust disk mass assuming optically thin continuum emission to be 0.6MJ–1.8MJ, indicating a very low mass disk. The CO isotopologues trace components of the outflows and inner envelope, while SO traces a compact, rotating disk-like component. Using several rotation curve fittings on the position–velocity diagram of the SO emission, the lower limits of the protostellar mass and gas disk radius are 0.022M⊙and 31.2 au, respectively, from our Modified 2 single power-law fitting. A conservative upper limit of the protostellar mass is inferred to be 0.1M⊙. The protostellar mass accretion rate and the specific angular momentum at the protostellar disk edge are found to be in the range of (1.3–6.1) × 10−6M⊙yr−1and (1.2–3.8) × 10−4km s−1pc, respectively, with an age estimated between 0.4 × 104yr and 7.5 × 104yr. At this young age with no clear substructures in the disk, planet formation would likely not yet have started. This study highlights the importance of high-resolution observations and systematic fitting procedures when deriving dynamical properties of deeply embedded Class 0 protostars.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
